Overexpression of Candida albicans CDR1, CDR2, or MDR1 does not produce significant changes in echinocandin susceptibility.
نویسندگان
چکیده
The micafungin and caspofungin susceptibilities of Candida albicans laboratory and clinical isolates and of Saccharomyces cerevisiae strains stably hyperexpressing fungal ATP-binding cassette (ABC) or major facilitator superfamily (MFS) transporters involved in azole resistance were determined using three separate methods. Yeast strains hyperexpressing individual alleles of ABC transporters or an MFS transporter from C. albicans gave the expected resistance profiles for the azoles fluconazole, itraconazole, and voriconazole. The strains hyperexpressing CDR2 showed slightly decreased susceptibility to caspofungin in agar plate drug resistance assays, as previously reported, but increased susceptibility to micafungin compared with either the strains hyperexpressing CDR1 or the null parent deleted of seven ABC transporters. The strains hyperexpressing CDR1 showed slightly decreased susceptibility to micafungin in these assays. A C. albicans clinical isolate overexpressing both Cdr1p and Cdr2p relative to its azole-sensitive isogenic progenitor acquired resistance to azole drugs and showed reduced susceptibility to caspofungin and slightly increased susceptibility to micafungin in agar plate drug resistance assays. None of the strains showed significant resistance to micafungin or caspofungin in liquid microdilution susceptibility assays. The antifungal activities of micafungin and caspofungin were similar in agarose diffusion assays, although the shape and size of the caspofungin inhibitory zones were affected by medium composition. The assessment of micafungin and caspofungin potency is therefore assay dependent; the differences seen with agar plate drug resistance assays occur over narrow ranges of echinocandin concentrations and are not of clinical significance.
منابع مشابه
Using PCR to Compare the Expression of CDR1, CDR2, and MDR1 in Candida Albicans Isolates Resistant and Susceptible to Fluconazole
Abstract Background and objectives: More Candida albicans strains are reported resistant to fluconazole in patients with AIDS, cancer and organ recipients. Fluconazole resistance can be attributed to changes in pathways of sterol biosynthesis, mutation in or overexpression of ERG11 and the expression of CDR1, CDR2, and MDR1. This study aimed to compare the ex...
متن کاملProteomic analysis of Mrr1p- and Tac1p-associated differential protein expression in azole-resistant clinical isolates of Candida albicans.
Azole resistance in Candida albicans is frequently caused by the overexpression of multi-drug efflux pump genes MDR1, CDR1, and CDR2 due to gain-of-function mutations in the zinc cluster transcription factors Mrr1p and Tac1p. In this study, we performed a comparative proteomic analysis to identify proteins whose expression level is influenced by these transcription factors. Both 2-DE and PMF we...
متن کاملThe Transcription Factor Ndt80 Does Not Contribute to Mrr1-, Tac1-, and Upc2-Mediated Fluconazole Resistance in Candida albicans
The pathogenic yeast Candida albicans can develop resistance to the widely used antifungal agent fluconazole, which inhibits ergosterol biosynthesis, by the overexpression of genes encoding multidrug efflux pumps or ergosterol biosynthesis enzymes. Zinc cluster transcription factors play a central role in the transcriptional regulation of drug resistance. Mrr1 regulates the expression of the ma...
متن کاملGenome-wide expression profiling of the response to ciclopirox olamine in Candida albicans.
OBJECTIVES The aim of this study was to identify changes in the gene expression profile of Candida albicans upon exposure to the hydroxypyridone anti-infective agent ciclopirox olamine in an effort to better understand its mechanism of action. METHODS C. albicans SC5314 was exposed to either medium alone or ciclopirox olamine at a concentration equivalent to the IC50 (0.24 mg/L) for 3 h. RNA ...
متن کاملRTA2, a novel gene involved in azole resistance in Candida albicans.
Widespread and repeated use of azoles, particularly fluconazole, has led to the rapid development of azole resistance in Candida albicans. Overexpression of CDR1, CDR2, and CaMDR1 has been reported contributing to azole resistance in C. albicans. In this study, hyper-resistant C. albicans mutant, with the above three genes deleted, was obtained by exposure to fluconazole and fluphenezine for 28...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Antimicrobial agents and chemotherapy
دوره 50 4 شماره
صفحات -
تاریخ انتشار 2006